Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Carcinog ; 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38656551

RESUMO

Acetyl-CoAacyltransferase2 (ACAA2) is a key enzyme in the fatty acid oxidation pathway that catalyzes the final step of mitochondrial ß oxidation, which plays an important role in fatty acid metabolism. The expression of ACAA2 is closely related to the occurrence and malignant progression of tumors. However, the function of ACAA2 in ovarian cancer is unclear. The expression level and prognostic value of ACAA2 were analyzed by databases. Gain and loss of function were carried out to explore the function of ACAA2 in ovarian cancer. RNA-seq and bioinformatics methods were applied to illustrate the regulatory mechanism of ACAA2. ACAA2 overexpression promoted the growth, proliferation, migration, and invasion of ovarian cancer, and ACAA2 knockdown inhibited the malignant progression of ovarian cancer as well as the ability of subcutaneous tumor formation in nude mice. At the same time, we found that OGT can induce glycosylation modification of ACAA2 and regulate the karyoplasmic distribution of ACAA2. OGT plays a vital role in ovarian cancer as a function of oncogenes. In addition, through RNA-seq sequencing, we found that ACAA2 regulates the expression of DIXDC1. ACAA2 regulated the malignant progression of ovarian cancer through the WNT/ß-Catenin signaling pathway probably. ACAA2 is an oncogene in ovarian cancer and has the potential to be a target for ovarian cancer therapy.

2.
Biol Direct ; 19(1): 1, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38163864

RESUMO

BACKGROUND: Phosphoglycerate kinase 1 (PGK1) is a metabolic enzyme that participates in various biological and pathological processes. Dysregulated PGK1 has been observed in numerous malignancies. However, whether and how PGK1 affects non-small cell lung cancer (NSCLC) is not yet fully elucidated. METHODS: Herein, the non-metabolic function of PGK1 in NSCLC was explored by integrating bioinformatics analyses, cellular experiments, and nude mouse xenograft models. The upstream regulators and downstream targets of PGK1 were examined using multiple techniques such as RNA sequencing, a dual-luciferase reporter assay, Co-immunoprecipitation, and Western blotting. RESULTS: We confirmed that PGK1 was upregulated in NSCLC and this upregulation was associated with poor prognosis. Further in vitro and in vivo experiments demonstrated the promoting effects of PGK1 on NSCLC cell growth and metastasis. Additionally, we discovered that PGK1 interacted with and could be O-GlcNAcylated by OGT. The inhibition of PGK1 O-GlcNAcylation through OGT silencing or mutation at the T255 O-GlcNAcylation site could weaken PGK1-mediated NSCLC cell proliferation, colony formation, migration, and invasion. We also found that a low miR-24-3p level led to an increase in OGT expression. Additionally, PGK1 exerted its oncogenic properties by augmenting ERK phosphorylation and MCM4 expression. CONCLUSIONS: PGK1 acted as a crucial mediator in controlling NSCLC progression. The miR-24-3p/OGT axis was responsible for PGK1 O-GlcNAcylation, and ERK/MCM4 were the downstream effectors of PGK1. It appears that PGK1 might be an attractive therapeutic target for the treatment of NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , MicroRNAs , Animais , Camundongos , Humanos , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , MicroRNAs/genética , Proliferação de Células/genética , Regulação para Cima , Linhagem Celular Tumoral , Movimento Celular/genética , Fosfoglicerato Quinase/genética , Fosfoglicerato Quinase/metabolismo
4.
Biomed Res Int ; 2021: 2291899, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34595235

RESUMO

BACKGROUND: The association between heart failure (HF) and cognitive impairment has received increasing attention from scholars and researchers in recent years. However, no systematic studies have been carried out yet focused on the crosstalk between heart failure and cognitive impairment via miRNAs. METHODS: GSE104150, GSE53473, GSE120584, and GSE116250 with RNA-seq data and clinical data were downloaded from the GSE database. All data were statistically analysed using R software to detect DE-miRNAs and DE-mRNAs associated with both HF and cognitive impairment. Protein-protein interaction (PPI) networks were mapped, and a logistic regression model for cognitive impairment prediction was developed. Furthermore, the TTRUST database and miRWalk were used to map miRNA-transcription factor (TF) and messenger RNA (mRNA) regulatory pathways. Finally, core TFs were enriched for analysis. RESULTS: Differentially enriched DE-miRNAs and DE-mRNAs both present in HF and cognitive impairment were determined. A logistic regression model established based on DE-miRNAs was validated to have a strong performance in cognitive impairment prediction. The core miRNA-TF-mRNA pathway was formed by mapping the PPI networks associated with the two diseases. Further GSEA was performed with V-rel reticuloendotheliosis viral oncogene homolog B (RELB) as the core TF, and the retinol metabolism and gap junction pathways were analysed. CONCLUSIONS: This study was the first attempt to predict the crosstalk and examine underlying mechanisms between HF and cognitive impairment applying bioinformatics. The findings suggested a potential hsa-miR-933/RELB/CCL21 regulatory axis correlated with HF and neurological disorders (or cognitive impairment), according to PPI networks.


Assuntos
Quimiocina CCL21/metabolismo , Disfunção Cognitiva/genética , Insuficiência Cardíaca/genética , MicroRNAs/genética , Transdução de Sinais , Fator de Transcrição RelB/metabolismo , Análise de Variância , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Ontologia Genética , Redes Reguladoras de Genes , Humanos , Modelos Logísticos , MicroRNAs/metabolismo , Mapas de Interação de Proteínas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais/genética
5.
J Food Sci ; 86(6): 2766-2777, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33931852

RESUMO

Acrylamide (AA), which is a carcinogen in humans, has been a research focus in terms of food risk assessment. However, few published studies have explored protein strategies to reduce the health risks of AA. The objective of this study was to investigate the binding of AA with soy protein isolate (SPI) and elucidate the binding mechanism. The results showed that AA could bind with nontreated, heat-treated, high-pressure homogenization-treated, and ultrasound-treated SPI in vitro. Fourier-transform infrared spectroscopy suggested that secondary structure of SPI changed significantly after binding with AA in the nontreated and different treated groups. Moreover, fluorescence quenching experiments suggested that the quenching of SPI by AA was static quenching and hydrogen bonds, hydrophobic interactions, and van der Waals forces were involved in this process. PRACTICAL APPLICATION: The study of SPI and AA binding could provide a new perspective for reducing the bioaccessibility of AA in human body by using protein. The results showed that SPI could potentially be used as a novel health strategy to reduce the harm of AA in the human body.


Assuntos
Acrilamida/metabolismo , Proteínas de Soja/metabolismo , Acrilamida/química , Humanos , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Técnicas In Vitro , Estrutura Secundária de Proteína , Proteínas de Soja/química , Espectroscopia de Infravermelho com Transformada de Fourier
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...